/* Copyright 2020 Kyle Gunger Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package texec import ( "tparse" "fmt" "strconv" ) /* So here's what I care to support at present: Type checking, basic types, writing to stdout or a file Variable and state contexts Reading from files Raw structs Appending to arrays Calling functions and methods libtnsl stub This subset should theoretically be enough to write a compiler. */ //################ //# Helper Funcs # //################ // Error helper func errOut(msg string, place tparse.Token) { fmt.Println("Error in eval:") fmt.Println(msg) fmt.Println(place) panic("EVAL ERROR") } func errOutCTX(msg string, place tparse.Token, ctx TContext) { fmt.Println("Error in eval:") fmt.Println(msg) fmt.Println(place) fmt.Println(ctx) panic("EVAL ERROR") } // Names of artifacts, finding artifacts func getDefNames(def tparse.Node) []string { out := []string{} for i := 0; i < len(def.Sub); i++ { if def.Sub[i].Data.Data == "vlist" && def.Sub[i].Data.Type == 10 { vl := def.Sub[i] for i := 0; i < len(vl.Sub); i++ { if vl.Sub[i].Data.Type == tparse.DEFWORD { out = append(out, vl.Sub[i].Data.Data) } else if vl.Sub[i].Data.Data == "=" && vl.Sub[i].Sub[0].Data.Type == tparse.DEFWORD { out = append(out, vl.Sub[i].Sub[0].Data.Data) } } } } return out } func getBlockName(block tparse.Node) []string { out := []string{} for i := 0; i < len(block.Sub[0].Sub); i++ { if block.Sub[0].Sub[i].Data.Type == tparse.DEFWORD { out = append(out, block.Sub[0].Sub[i].Data.Data) } } return out } func getTypeName(t tparse.Node) []string { out := []string{} for i := 0; i < len(t.Sub); i++ { if t.Sub[i].Data.Type == tparse.DEFWORD { out = append(out, t.Sub[i].Data.Data) } } return out } // Get the list of names defined by the block or variable definition func getNames(root tparse.Node) []string { switch root.Data.Data { case "block": return getBlockName(root) case "define": return getDefNames(root) case "raw", "struct", "enum": return getTypeName(root) } return []string{} } // Find an artifact from a path and the root node func getArtifact(a TArtifact, root *TModule) *tparse.Node { mod := root for i := 0; i < len(a.Path); i++ { for j := 0; j < len(mod.Sub); j++ { if mod.Sub[j].Name == a.Path[i] { mod = &(mod.Sub[j]) break } } } for i := 0; i < len(mod.Artifacts); i++ { n := getNames(mod.Artifacts[i]) for i := 0; i < len(n); i++ { if n[i] == a.Name { return &(mod.Artifacts[i]) } } } return nil } // Type related stuff // Checking type equality // Assumes a is an unknown type and b is a known good type. func equateTypePS(a, b TType, preskip int) bool { cc := 0 for i := 0; i < len(a.Pre); i++ { if a.Pre[i] == "const" { cc++ } } if len(a.T.Path) != len(b.T.Path) || len(a.Pre) - preskip - cc != len(b.Pre) { fmt.Println("thing 1") return false } for i := preskip; i < len(a.Pre); i++ { if a.Pre[i] == "const" { preskip++ continue } else if a.Pre[i] != b.Pre[i - preskip] { fmt.Println("thing 3") return false } } for i := 0; i < len(a.T.Path); i++ { if a.T.Path[i] != b.T.Path[i] { fmt.Println("thing 4") return false } } if a.T.Name != b.T.Name { fmt.Println("thing 5") return false } if (a.Post == "`" && b.Post != "`") || (b.Post == "`" && a.Post != "`") { fmt.Println("thing 6") return false } return true; } func equateType(a, b TType) bool { return equateTypePS(a, b, 0) } // Generate a TType from a 'type' node func getType(t tparse.Node) TType { out := TType{} i := 0 // Pre for ; i < len(t.Sub); i++ { if t.Sub[i].Data.Type == tparse.DEFWORD || t.Sub[i].Data.Type == tparse.KEYTYPE { break } else { out.Pre = append(out.Pre, t.Sub[i].Data.Data) } } // T for ; i < len(t.Sub); i++ { if t.Sub[i].Data.Type == tparse.KEYTYPE { out.T.Name = t.Sub[i].Data.Data i++ break } else if t.Sub[i].Data.Type == tparse.DEFWORD { if i < len(t.Sub) - 1 { if t.Sub[i + 1].Data.Type == tparse.DEFWORD { out.T.Path = append(out.T.Path, t.Sub[i].Data.Data) } else { out.T.Name = t.Sub[i].Data.Data break } } else { out.T.Name = t.Sub[i].Data.Data } } } // Post if i < len(t.Sub) { if t.Sub[i].Data.Data == "`" { out.Post = "`" } } return out } // Value generation func getStringLiteral(v tparse.Node) []byte { str, err := strconv.Unquote(v.Data.Data) if err != nil { errOut("Failed to parse string literal.", v.Data) } return []byte(str) } func getCharLiteral(v tparse.Node) byte { val, mb, _, err := strconv.UnquoteChar(v.Data.Data, byte('\'')) if err != nil || mb == true{ errOut("Failed to parse character as single byte.", v.Data) } return byte(val) } func getIntLiteral(v tparse.Node) int { i, err := strconv.ParseInt(v.Data.Data, 0, 64) if err != nil { errOut("Failed to parse integer literal.", v.Data) } return int(i) } func getCompositeLiteral(v tparse.Node) []interface{} { out := []interface{}{} if v.Data.Data != "comp" || v.Data.Type != 10 { return out } var add interface{} for i := 0; i < len(v.Sub); i++ { if v.Sub[i].Data.Type == tparse.LITERAL { dat := []rune(v.Sub[i].Data.Data) if dat[0] == '"' { add = getStringLiteral(v.Sub[i]) } else if dat[0] == '\'' { add = getCharLiteral(v.Sub[i]) } else { add = getIntLiteral(v.Sub[i]) } } else if v.Sub[i].Data.Data == "comp" && v.Sub[i].Data.Type == 10 { add = getCompositeLiteral(v.Sub[i]) } out = append(out, add) } return out } func getLiteral(v tparse.Node, t TType) interface{} { if equateType(t, tInt) { return getIntLiteral(v) } else if equateType(t, tCharp) { return getCharLiteral(v) } else if equateType(t, tString) { return getStringLiteral(v) } return getCompositeLiteral(v) } //##################### //# Finding Artifacts # //##################### func resolveModArtifact() *TVariable { return nil } func resolveArtifactCall() TVariable { return TVariable{} } func resolveArtifact(a TArtifact, ctx *TContext, root *TModule) *TVariable { return nil } //################# //# Runtime funcs # //################# // Value statement parsing // Get a value from nodes. Must specify type of value to generate. func evalValue(v tparse.Node, t TType) TVariable { return TVariable{} } func evalBlock(b tparse.Node, m TArtifact) TVariable { return TVariable{tNull, nil} }