/* Copyright 2020 Kyle Gunger Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package texec import ( "tparse" "fmt" "strconv" "strings" ) /* So here's what I care to support at present: Type checking, basic types, writing to stdout or a file Variable and state contexts Reading from files Raw structs Appending to arrays Calling functions and methods libtnsl stub This subset should theoretically be enough to write a compiler. */ var ( // Program to run prog *TModule // Current artifact cart TArtifact //Default null value null = TVariable{tNull, nil} ) //################ //# Helper Funcs # //################ // Error helper func errOut(msg string) { fmt.Println("==== BEGIN ERROR ====") fmt.Println(msg) fmt.Println(cart) fmt.Println("==== END ERROR ====") panic(">>> PANIC FROM EVAL <<<") } func errOutCTX(msg string, ctx VarMap) { fmt.Println("==== BEGIN ERROR ====") fmt.Println(msg) fmt.Println(cart) fmt.Println(ctx) fmt.Println("==== END ERROR ====") panic(">>> PANIC FROM EVAL <<<") } // Names of artifacts, finding artifacts func getDefNames(def tparse.Node) []string { out := []string{} for i := 0; i < len(def.Sub); i++ { if def.Sub[i].Data.Data == "vlist" && def.Sub[i].Data.Type == 10 { vl := def.Sub[i] for i := 0; i < len(vl.Sub); i++ { if vl.Sub[i].Data.Type == tparse.DEFWORD { out = append(out, vl.Sub[i].Data.Data) } else if vl.Sub[i].Data.Data == "=" && vl.Sub[i].Sub[0].Data.Type == tparse.DEFWORD { out = append(out, vl.Sub[i].Sub[0].Data.Data) } } } } return out } func getBlockName(block tparse.Node) []string { out := []string{} for i := 0; i < len(block.Sub[0].Sub); i++ { if block.Sub[0].Sub[i].Data.Type == tparse.DEFWORD { out = append(out, block.Sub[0].Sub[i].Data.Data) } else if block.Sub[0].Sub[i].Data.Data == "method" { out = append(out, block.Sub[0].Sub[i].Sub[0].Data.Data) } else if block.Sub[0].Sub[i].Data.Type == tparse.KEYWORD { switch block.Sub[0].Sub[i].Data.Data { case "if", "elif", "else", "loop", "match", "case", "default": out = append(out, block.Sub[0].Sub[i].Data.Data) default: } } } fmt.Println(out) return out } func getTypeName(t tparse.Node) []string { out := []string{} for i := 0; i < len(t.Sub); i++ { if t.Sub[i].Data.Type == tparse.DEFWORD { out = append(out, t.Sub[i].Data.Data) } } return out } // Get the list of names defined by the block or variable definition func getNames(root tparse.Node) []string { switch root.Data.Data { case "block": return getBlockName(root) case "define": return getDefNames(root) case "raw", "struct", "enum": return getTypeName(root) } return []string{} } func getModule(a TArtifact) *TModule { mod := prog for i := 0; i < len(a.Path); i++ { for j := 0; j < len(mod.Sub); j++ { if mod.Sub[j].Name == a.Path[i] { mod = &(mod.Sub[j]) break } if j + 1 == len(mod.Sub) { errOut(fmt.Sprintf("Failed to find module %v", a)) } } } return mod } func getModuleRelative(mod *TModule, a TArtifact) *TModule { for i := 0; i < len(a.Path); i++ { for j := 0; j < len(mod.Sub); j++ { if mod.Sub[j].Name == a.Path[i] { mod = &(mod.Sub[j]) break } if j + 1 == len(mod.Sub) { return nil } } } return mod } func getModuleInPath(a TArtifact) *TModule { mod := prog m := len(cart.Path) out := getModuleRelative(mod, a) for i := 0; i < m; i++ { for j := 0; j < len(mod.Sub); j++ { if mod.Sub[j].Name == cart.Path[i] { mod = &(mod.Sub[j]) break } } tmp := getModuleRelative(mod, a) if tmp != nil { out = tmp } } if out == nil { errOut(fmt.Sprintf("Failed to find module %d in path %v", m, cart)) } return out } // Find an artifact from a path and the root node func getNode(a TArtifact) *tparse.Node { mod := getModule(a) for i := 0; i < len(mod.Artifacts); i++ { n := getNames(mod.Artifacts[i]) for j := 0; j < len(n); j++ { if n[j] == a.Name { return &(mod.Artifacts[i]) } } } errOut(fmt.Sprintf("Failed to find node %v", a)) return nil } func getNodeRelative(s TArtifact) *tparse.Node { tmpmod := getModuleInPath(s) if tmpmod == nil { continue } for i := 0; i < len(tmpmod.Artifacts); i++ { n := getNames(tmpmod.Artifacts[i]) for j := 0; j < len(n); j++ { if n[j] == s.Name { return &(tmpmod.Artifacts[i]) } } } errOut(fmt.Sprintf("Failed to find node (relative) %v", s)) return nil } func getModDefRelative(s TArtifact) *TVariable { tmpmod := getModuleInPath(s) if tmpmod == nil { continue } val, prs := tmpmod.Defs[s.Name] if prs { return val } errOut(fmt.Sprintf("Failed to resolve mod def artifact (relative) %v", s)) return nil } // Returns a mod definition, requires a resolved artifact func getModDef(a TArtifact) *TVariable { mod := prog for i := 0; i < len(a.Path); i++ { for j := 0; j < len(mod.Sub); j++ { if mod.Sub[j].Name == a.Path[i] { mod = &(mod.Sub[j]) break } } } v, prs := mod.Defs[a.Name] if prs { return v } errOut(fmt.Sprintf("Failed to resolve mod def artifact %v", a)) return nil } // Type related stuff // Checking type equality // Assumes a is an unknown type and b is a known good type. func equateTypePS(a, b TType, preskip int) bool { cc := 0 for i := 0; i < len(a.Pre); i++ { if a.Pre[i] == "const" { cc++ } } if len(a.T.Path) != len(b.T.Path) || len(a.Pre) - preskip - cc != len(b.Pre) { return false } for i := preskip; i < len(a.Pre); i++ { if a.Pre[i] == "const" { preskip++ continue } else if a.Pre[i] != b.Pre[i - preskip] { return false } } for i := 0; i < len(a.T.Path); i++ { if a.T.Path[i] != b.T.Path[i] { return false } } if a.T.Name != b.T.Name { return false } if (a.Post == "`" && b.Post != "`") || (b.Post == "`" && a.Post != "`") { return false } return true; } func equateType(a, b TType) bool { return equateTypePS(a, b, 0) } // Generate a TType from a 'type' node func getType(t tparse.Node) TType { out := TType{} i := 0 // Pre for ; i < len(t.Sub); i++ { if t.Sub[i].Data.Type == tparse.DEFWORD || t.Sub[i].Data.Type == tparse.KEYTYPE { break } else { out.Pre = append(out.Pre, t.Sub[i].Data.Data) } } // T for ; i < len(t.Sub); i++ { if t.Sub[i].Data.Type == tparse.KEYTYPE { out.T.Name = t.Sub[i].Data.Data i++ break } else if t.Sub[i].Data.Type == tparse.DEFWORD { if i < len(t.Sub) - 1 { if t.Sub[i + 1].Data.Type == tparse.DEFWORD { out.T.Path = append(out.T.Path, t.Sub[i].Data.Data) } else { out.T.Name = t.Sub[i].Data.Data break } } else { out.T.Name = t.Sub[i].Data.Data } } } // Post if i < len(t.Sub) { if t.Sub[i].Data.Data == "`" { out.Post = "`" } } return out } // Value generation func getStringLiteral(v tparse.Node) []byte { str, err := strconv.Unquote(v.Data.Data) if err != nil { errOut(fmt.Sprintf("Failed to parse string literal %v", v.Data)) } return []byte(str) } func getCharLiteral(v tparse.Node) byte { val, mb, _, err := strconv.UnquoteChar(v.Data.Data, byte('\'')) if err != nil || mb == true{ errOut(fmt.Sprintf("Failed to parse character as single byte. %v", v.Data)) } return byte(val) } func getIntLiteral(v tparse.Node) int { i, err := strconv.ParseInt(v.Data.Data, 0, 64) if err != nil { errOut(fmt.Sprintf("Failed to parse integer literal. %v", v.Data)) } return int(i) } func getLiteralComposite(v tparse.Node) []interface{} { out := []interface{}{} for i := 0; i < len(v.Sub); i++ { if v.Sub[i].Data.Data[0] == '"' { out = append(out, getStringLiteral(v.Sub[i])) } else if v.Sub[i].Data.Data[0] == '\'' { out = append(out, getStringLiteral(v.Sub[i])) } else if v.Sub[i].Data.Data == "comp" { out = append(out, getLiteralComposite(v.Sub[i])) } else { out = append(out, getIntLiteral(v.Sub[i])) } } return out } func getLiteral(v tparse.Node, t TType) interface{} { if equateType(t, tInt) { return getIntLiteral(v) } else if equateType(t, tCharp) { return getCharLiteral(v) } else if equateType(t, tString) { return getStringLiteral(v) } return getLiteralComposite(v) } func compositeToStruct(str TArtifact, cmp []interface{}) VarMap { sv := getModDefRelative(str) vars := sv.Data.([]TVariable) if len(vars) != len(cmp) { return nil } out := make(VarMap) for i:=0;i 0 { return tnslEval(params[0], a.Name) } else { errOut("Need at least one arg to call tnsl.io func") } } else if tres == 1 { if len(params) > 1 { return tnslFileEval(params[0], params[1], a.Name) } else { errOut("Not enough args recieved to call tnsl.io.File method.") } } return null } func resolveArtifact(a TArtifact, ctx *VarMap) *TVariable { if len(a.Path) == 0 { val, prs := (*ctx)[a.Name] if !prs { errOutCTX(fmt.Sprintf("Could not resolve %s in the current context.", a.Name), *ctx) } return val } else { } return nil } //################# //# Runtime funcs # //################# // Value statement parsing // Parse a value node func evalValue(v tparse.Node, ctx *VarMap) TVariable { switch v.Data.Data { case "=": case "+": case "-": case "*": case "/": case "&&": case "||": case "==": case ".": } return null } // Generate a value for a definition func evalDefVal(v tparse.Node, ctx *VarMap) { } // Eval a definition func evalDef(v tparse.Node, ctx *VarMap) { } // Eval a control flow func evalCF(v tparse.Node, ctx *VarMap) (bool, TVariable) { //scopeVars := []string{} return false, null } func evalBlock(b tparse.Node, params []TVariable) TVariable { ctx := make(VarMap) for i := 0; i < len(b.Sub); i++ { switch b.Sub[i].Data.Data { case "define": evalDef(b.Sub[i], &ctx) case "value": evalValue(b.Sub[i], &ctx) case "block": ret, val := evalCF(b.Sub[i], &ctx) if ret { return val } case "return": return evalValue(b.Sub[i].Sub[0], &ctx) } } return null } func EvalTNSL(root *TModule, args string) TVariable { prog = root cart = TArtifact { []string{}, "main" } sarg := strings.Split(args, " ") targ := TVariable { TType { []string{"{}", "{}"}, TArtifact { []string{}, "charp" }, "" }, sarg } mainNod := getNode(cart) fmt.Println(mainNod) return evalBlock(*mainNod, []TVariable{targ}) }